Lecture 3 - cost를 최소화하는 법 (Gradient Descent)

안녕하세요.

이번 시간엔 머신 러닝의 꽃이라고 할 수 있는 Gradient Descent에 대해 알아봅시다.

 

가설과 비용

저번 시간에 배웠던 내용을 잠시만 복습하고 들어가 봅시다.

 

우선, Linear Regression의 가설 함수는 H(x) = Wx + b 였고,

Cost function은 각각의 H(x) 값에서 y값(정답)을 빼준 후,

그 값들을 죄다 제곱해서 평균을 내주는 것이었습니다.

기억이 나지 않는다면, 이전 포스팅 (https://cding.tistory.com/12)에서 다시 한번 복습하고 와주세요!

간단하게 만들자! b를 조져버리자!

그런데, 일단은 이해를 쉽게 하도록 하기 위해서 H(x)를 그냥 Wx라고 해봅시다.

(b를 빼준 것뿐, 일차함수라는 큰 틀은 변화하지 않았습니다.)

 

그러면, Cost function도 조금은 바뀌어서...

H(x)에서 y값을 빼주던 것을, Wx에서 y값을 빼주는 것으로 바꾸어도 상관없겠죠?

(H(x) = Wx 이므로)

cost(W)의 값은?

그럼 이 상태에서 cost(W)의 값을 구해보도록 합시다.

X, Y가 왼쪽 표와 같이 주어진다면, 각각 W=1, W=0, W=2 일 때의 Cost값은 무엇일까요?

 

W=1일 경우,

X=1, Y=1에서 (W*x - y)^2 = (1 * 1 - 1)^2 = 0

X=2, Y=2에서 (W*x - y)^2 = (1 * 2 - 2)^2 = 0

X=3, Y=3에서 (W*x - y)^2 = (1 * 3 - 3)^2 = 0

이 세 가지 경우의 수를 모두 더하면 0+0+0 = 0, 평균으로 나눠도 0

즉, Cost(1) = 0입니다.

cost가 0이므로, W=1일 때 완벽하게 데이터에 들어맞는다는 뜻이죠.

 

W=0일 경우에는?

X=1, Y=1에서 (W*x - y)^2 = (2 * 1 - 1)^2 = 1

X=2, Y=2에서 (W*x - y)^2 = (2 * 2 - 2)^2 = 4

X=3, Y=3에서 (W*x - y)^2 = (2 * 3 - 3)^2 = 9

이 세 가지 경우의 수를 모두 더하면 1 + 4 + 9 = 14, 평균으로 나누면 14/3 = 4.66666...

즉, Cost(0) = 4.67입니다.

 

W=2 일 경우에는 어떨지, 직접 한번 해 보시길 바랍니다.

참고로, 답은 W=0일 때와 동일하게 4.67이 됩니다.

밥그릇 모양처럼 생긴 cost(W) 함수...

이렇듯, W값에 따라 cost(W)의 값은 변하게 됩니다.

W=1일 때 cost의 값은 0으로 최소가 되고,

W=2, W=0일 때 cost의 값은 약 4.67이 되는 식이죠.

 

이때, 이런 식으로 cost(W)에서 W의 값에 값들을 많이 집어넣게 되면 위의 그래프처럼 함수가 그려집니다.

(x축을 W로, y축을 Cost(W) 값으로 집어넣은 그래프입니다.)

위에서는 W=-3부터 W=5까지만 집어넣었지만, 다른 값들을 넣어도 여전히 이차함수의 그래프가 그려지게 되겠죠.

 

그런데, 어떻게 cost(W)의 값이 최소가 되는 W의 값을 구할 수 있을까요?

드디어 등장! Gradient Descent!

그래서 등장한 방법이 바로 Gradient Descent 알고리즘입니다.

(Gradient경사, Descent하강이므로 한국어로는 경사 하강법이라고 불립니다.)

위와 같은 상황에서 최소의 W값을 찾아주기 위한 알고리즘인데요,

굉장히 다양한 최소화 문제(특정 값을 최소화해주어야 할 때) 자주 사용되는 기법입니다.

Gradient Descent가 그래서 어떻게 작동하는데 그려?

일단은, Gradient Descent의 작동 방식에 대해 간단하게 먼저 알아봅시다.

우선, W를 랜덤 한 값으로 정해줍니다. (무엇으로 정해도 큰 상관은 없습니다.)

 

그런 후, 그 W의 값을 cost(W)의 값을 최소화시킬 수 있는 방향으로 바꿔줍니다. (보통 W값을 업데이트해준다고 표현합니다.)

그리고, 이 짓거리를 cost(W)가 최소가 될 때까지 반복합니다.

(저 위의 예시의 경우, W=1이 될 때까지 반복될 것입니다.)

 

그럼 여기서 당연히 의문이 하나 드실 것입니다.

"그래서 cost(W)의 값을 최소화시킬 수 있는 방향을 어떻게 아는데??"

 

출처 : 구글 이미지 검색

자, 위의 사진에서 W의 값을 작은 공이라고 생각해 봅시다.

그러면, 공은 어느 방향으로 굴러가나요?

위의 경우, 경사가 왼쪽 아래로 져 있으므로 공은 왼쪽으로 굴러가게 될 것입니다.

그러면, 이 공은 어디까지 굴러갈까요?

cost(W) (위 이미지에선 J(w)라고 적혀있음)의 값이 가장 작아지는,

다시 말해서 가장 높이가 아래에 있는 곳까지 굴러갈 것입니다.

 

Gradient Descent는 이러한 원리와 동일하다고 봐도 됩니다.

W값이 처음 주어졌을 때, 우선 그 W값에 대한 경사를 먼저 구합니다.

그 후, 그 경사가 진 방향으로 W값을 바꿔줍니다.

경사가 왼쪽 방향으로 져 있다면, W값을 빼주고...

경사가 오른쪽 방향으로 져 있다면, W값을 더해주는 식으로 말이죠.

 

그렇게 한다면, 저 함수에서 가장 작은 cost(W)의 값을 가지는 W의 값을 구할 수 있게 됩니다.

Gradient Descent는 이렇게 단순한 생각을 갖고 만들어진 알고리즘입니다.

 

그런데, 그 각각의 W값에 대한 경사는 어떻게 구하냐고요?

그 경사를 구하기 위해서, 우리는 저 함수를 W값에 대하여 미분해 줄 것입니다.

(미분이 뭔지 잘 모르신다면, 간단하게 그냥 함수의 기울기를 구하는 방법 정도로 이해하시면 됩니다.)

일단 계산하기 쉽게 만들어주자!

지금부터의 내용은, 기본적으로 미분을 알고 있어야 이해가 가능합니다!

미분을 모르신다면, 그냥 저 아래로 쭉 내리시면 되겠습니다.

 

우선, f(x)^2를 미분하면 2 * f(x) * f'(x)가 됩니다.

그런데, 그 값에 그냥 m분의 1만 곱해버리면 상수 2가 남아버리니 계산하기 귀찮아지므로...

m분의 1 대신 2m분의 1을 곱하는 것으로 식을 바꾸겠습니다.

수학... 구와아악

f(x)^2를 미분하면, 2 * f(x) * f'(x)가 된다는 사실을 이용하면,

(Wx - y)^2를 미분하면

2 * (Wx - y) * x 가 됩니다.

 

그리고 시그마 앞에선 2가 앞으로 넘어갈 수 있으므로,

2를 앞으로 넘기면 시그마 앞의 값은 1/2m * 2 = 1/m이 됩니다.

 

결국, W값은 W값에서 (Wx - y) * x의 평균을 낸 값을 뺀 값으로 업데이트해 줍니다. (위의 식 참고)

참고로, 위의 알파 값은 Learning Rate라는 것으로, 이에 대한 자세한 내용은 다른  시간에 알아봅시다.

 

Q. 왜 W값에서 "(Wx - y) * x의 평균을 낸 값"을 더하지 않고 빼는 것인가요?

A. 경사가 왼쪽을 향하고 있을 때, 그때의 미분 값은 양수인 가요, 음수인가요?

예, 경사가 왼쪽으로 져 있다면, 그 미분 값 (경사의 기울기 값)은 양수가 됩니다.

그런데 경사가 왼쪽으로 져 있으면, W값을 왼쪽으로 옮겨야겠죠? (즉, W값을 감소시켜야겠죠?)

그러므로, W값에서 양수를 빼주어야 W값이 감소하기 때문에, 저 값을 더하지 않고 빼는 것입니다.

 

반대로 경사가 오른쪽으로 져 있을 때에는 미분 값(기울기 값)이 음수가 되는데,

W값을 증가시켜 주어야 하므로,

음수를 빼주어서 W값을 증가시키는 것입니다.

응~~ 미분 컴퓨터한테 시켜 그냥~~

그런데, 저 미분을 죄다 하고 있을 시간은 사람에게 없습니다.

그런 일 따위는 컴퓨터에게 시킬 수 있습니다.

즉, 미분 사실 몰라도 공식만 대충 집어넣으면 된다는 거죠,

(게다가 텐서 플로우를 비롯한 대부분의 머신러닝 툴에서는 Gradient Descent는 모두 지원합니다.)

윽;; 무슨 함수가 이래?

그런데 만약 함수가 이따구로 생겼다면 어떻게 될까요?

어느 점에서 시작하느냐에 따라 경사가 진 곳이 죄다 다르므로, 향하는 방향이 죄다 다르게 됩니다.

결국, W값이 우리가 원하는 "함수 전체에서의 최솟값"으로 가는 것이 아니라,

"일정 구간만에서의 최솟값"으로 가게 됩니다.

이를 각각, "Global Minima"와 "Local Minima"라고 부릅니다.

 

아무튼, 저렇게 생긴 함수에선 그냥 W값이 Local Minima에 처박힐 가능성이 매우 높기에, Gradient Descent의 성능이 매우 떨어집니다.

편-안한 트램펄린 모양의 함수, Convex function

그러므로, 우리는 Cost function 저렇게 이상하게 생긴 함수로 두면 안되고,

아름다운 밥그릇 모양 (중간이 패인 트램펄린 모양?)으로 생긴 함수를 사용하여야 합니다.

그러면, 결국 Local minima가 한 개뿐이므로 Local MinimaGlobal Minima와 같은 것이 됩니다.

이런 식으로, Local minimaGlobal minima가 동일한 아름다운 함수를 우리는 Convex function이라고 부릅니다.

 

그러므로, 우리는 Convex functionCost function으로 사용하여야 합니다.

다음 이 시간에는...

 

다음 시간에는, Multi-variable Linear Regression(다변수 선형 회귀)에 대해 배워보겠습니다.

(왜 로지스틱이라고 적혀있는지는 잘 모르겠습니다;; 분명 다음엔 Linear regression인데;)

그럼 안녕!

+ Recent posts