모두를 위한 딥러닝

다변수 선형 회귀

이번 포스팅에서는, Multivariable Linear Regression, 즉 다변수 선형 회귀에 대해서 알아보겠습니다.

복습시간 (Moment of Truth!)

일단 저번 시간까지 했던 내용들을 복습해 보겠습니다.

일반적인 Linear Regression의 Hypothesis는 H(x) = Wx + b였죠?

Cost function은 H(x) - y를 제곱해서 모두 더한 뒤 평균값을 내주는 것이었고...

Gradient Descent는 가장 적절한 (cost(W) 값이 가장 작은) W값을 찾아내는 알고리즘이었습니다.

간단한 Linear Regression 데이터

그리고 우리가 마주했던 데이터들은 다들 이런 형식으로 생겼습니다.

x값 하나당 y값 하나가 주어지는 형식이었죠.

이때, x는 하나의 feature을 의미합니다.

가령, 위의 경우엔 특정 점수 y를 그 점수를 갖게 되었던 특징인 feature x를 통해 알아봤던 것이죠.

그래서 위의 사진에서 one-variable one-feature라고 적혀있는 것입니다.

변수 하나에 특징도 하나밖에 (공부한 시간) 없으니까요.

데이터가 세배!!

그런데, 오늘 배울 Multi-variable Linear Regression은 데이터가 조금 다르게 들어옵니다.

x값이 하나가 아니라, 두 개, 세 개, 혹은 10000개도 들어오는데요,

각각의 x값 (x1, x2, x3)들은 각자의 특성을 띄고 있습니다.

위의 예시의 경우 x1 은 quiz1의 점수,

x2는 quiz2의 점수,

x3는 중간고사 1의 점수이고

이 점수들을 모두 어떠한 방식으로 계산했을 때 최종 점수인 Y가 나오게 되는 것입니다.

그냥 이러면 끝.

그런데, 그렇게까지 어려워지진 않았습니다!

Linear Regression의 기본형인 H(x) = Wx + b 를 그대로 따라서,

H(x1, x2, x3) = w1x1 + w2x2 + w3x3 + b

로 약간만 변형되었을 뿐입니다.

 

잠깐만 살펴보면, x의 종류 (feature의 개수)가 늘어나면, 그에 따라 w의 개수도 늘어나게 됩니다!

x1에는 w1, x2에는 w2, x3에는 w3를 곱해주는 식으로 말이죠.

그리고, b의 값은 여전히 그대로 남아있습니다.

feature가 많아졌다고 해서 b의 개수도 많아지진 않은 것이죠.

(그도 당연한 것이, 각자의 x값에 b를 더하더라도 어차피 상수 하나 더한 거랑 같으니까요.)

cost function도 요정도로만 바뀜 ㅎ

그럼, Cost function은 어떻게 바뀌었을까요?

H(x1, x2, x3) = w1x1 + w2x2 + w3x3 + b

를 그대로 우리가 사용하던 Cost function 안에 집어넣으면 됩니다.

즉, H(x1, x2, x3) - y 를 제곱한 것을 모두 더해서 평균을 내는 것이죠.

조금만 더 풀자면, H(x1, x2, x3) = w1x1 + w2x2 + w3x3 + b 이므로,

w1x1 + w2x2 + w3x3 + b - 를 제곱해서 모두 더해주는 것이죠.

다변수... 다 변수?

그리고 x1, x2, x3와 같이 feature의 개수가 세 개가 아니고 무수히 많더라도, 위의 식처럼

H(x1, x2, x3,... , xn) = w1x1 + w2x2 + w3x3 +... + wnxn + b

로 표현이 가능합니다.

즉, 우리가 원래 알고 있던 Linear Regression의 식을 아주 쬐끔만 변형시켜 주면,

Multi-variable Linear Regression도 뚝딱 해낼 수 있습니다.

 

그런데, 중요한 것은 그게 아니고,

"그래서 이거 계산 어떻게 할건데?"입니다.

 

그러니깐, 기본적인 Linear Regression에서는 x값이 10개 정도 주어지고, w값이 하나니깐

x1 * w + x2 * w + x3 * w +... + x10 * w + b

정도로 계산이 가능했고, 그냥 {x1, x2, x3,... , x10} * w + b만 해도 되었습니다.

 

하지만, feature이 많아져서, 상황이 조금 달라졌습니다.

x1의 첫 번째 데이터를 x11, x3의 네 번째 데이터를 x34... 이런 식으로 쓰고, feature가 n개이고 데이터의 개수가 m 개라면 우리가 계산해야 할 식은

   x11 * w1 + x21 * w2 +... + xn1 * wn + b

+ x12 * w1 + x22 * w2 +... + xn2 * wn + b

...

+ x1m * w1 + x2m * w2 +... + xnm * wn + b

 

처럼... 딱 봐도 복잡한 이차원 배열 * 일차원 배열을 계산해야 합니다.

하지만, 이것을 반복문으로 그냥 쭉 돌려버릴 수도 없는 것이...

가령 n과 m이 각각 10 만씩이라고만 해도,

반복문으로 돌리면 100억 번의 연산을 해야 한다는 말도 안 되는 결과가 나오기 때문입니다.

그러면 이것을 어떻게 간단하게 연산할 수 있을까요?

Matrix multiplication - 행렬곱

바로, "Matrix multiplication", 즉 "행렬곱"으로 이 문제를 해결합니다.

행렬곱은 어떤 식으로 진행되는지 위의 그림을 통해 알아봅시다.

(헷갈릴까 봐 써놓는데 - 가로가 행이고 세로가 열입니다!!!)

왼쪽의 [[1,2,3], [4,5,6]]의 (2,3)의 행렬과 [[7,8], [9,10], [11,12]]의 (3,2) 행렬을 곱하는 것은 간단합니다.

 

왼쪽의 행렬의 첫 번째 행인 [1,2,3]의 각각의 요소들을 오른쪽의 행렬의 첫 번째 열인 [7,9,11]로 곱해서 더해줍니다.

즉, 1*7 + 2*9 + 3*11 = 7 + 18 + 33 = 58

이 되는 겁니다.

그리고, 이 값을 결괏값의 행렬의 첫 번째 행, 첫 번째 열에 놓습니다.

 

두 번째도 동일하게 진행하면 됩니다.

왼쪽의 행렬의 첫 번째 행인 [1,2,3]의 각각의 요소들을 오른쪽의 행렬의 두 번째 열인 [8,10,12]로 곱해서 더해줍니다.

그러면, 1*8 + 2*10 + 3*12 = 8 + 20 + 36 = 64가 됩니다.

그리고, 이 값을 결괏값의 행렬의 첫 번째 행, 두 번째 열에 놓습니다.

 

두 번째 열은 직접 한번 해보시기 바랍니다.

행렬곱을 그래서 어떻게 쓸건데??

자, 대충 배웠으니 한번 대충 적용해 봅시다.

w1x1 + w2x2 + w3x3을 행렬로 계산하려면 어떻게 해야 할까요?

 

x1, x2, x3를 (1,3)의 크기의 행렬로 놓고,

w1, w2, w3을 (3,1)의 크기의 행렬로 놓는다면,

행렬곱을 통해 x1 w1 + x2w2 + x3w3를 구할 수 있게 됩니다.

 

아니 근데 저걸로 어떻게 저걸 계산하냐고??

그런데, 우리가 가지고 있는 데이터는 x1, x2, x3값이 각각 하나만 들어있는 데이터가 아니죠?

x1 여러 개, x2 여러 개, x3 여러 개로 이루어진 데이터를 갖고 있는데, 이것을 어떻게 계산할까요?

아까 했던거 또나오는거다!

아까 저 위에서 했던 짓을 똑같이 반복하면 됩니다.

우선, x값들의 행렬 중 첫 번째 행인 x11, x12, x13과 w1, w2, w3를 곱하여,

x11w1 + x12w2 + x13w3을 결괏값 행렬의 첫 번째 요소로 넣어줍니다.

그다음엔 x21w1 + w22w2 + w23w3 을 넣게 될 것이고,

그것을 마지막 데이터인 x51, x52, x53까지 반복하면 되는 것입니다.

 

그러면, 왼쪽의 x값의 데이터와 오른쪽의 w값의 데이터를 통해 결괏값을 행렬로 도출해 낼 수 있는 것이죠.

중요한 거니까 꼭 기억하도록! H(X) = XW!!

그런데 행렬곱에는 특징이 하나 있습니다.

입력되는 데이터의 형태에 따라 결괏값의 형태가 달라진다는 것이죠.

가령 바로 위의 예시를 보면, (5,3) 크기의 데이터와 (3,1) 크기의 데이터를 행렬곱하면, (5,1) 크기의 결괏값이 나오게 됩니다.

 

어떻게 보면 당연한 것이긴 합니다.

왼쪽의 (5,3) 행렬의 각각의 행을 오른쪽 (3,1)의 행렬에 곱해서 모두 더한 값은, 결괏값인 (5,1)의 행들에 집어넣고 있으니까요.

 

그런데, 여기서 중요한 점 하나가 더 있습니다!!

만약, (5,3) 크기의 행렬에 (2,1) 크기의 행렬을 행렬곱시키면 어떻게 될까요?

... 행렬곱 시킬 수 없습니다.. ㅎㅎ

이것도 어떻게 보면 당연한 것이겠지만,

x1, x2, x3를 w1, w2에만 곱할 수는 없는 노릇 아니겠습니까 ㅎㅎ

 

 

즉, 행렬곱을 계산해 줄 때에는 데이터의 크기를 잘 생각해야 합니다!

(n, m) 크기의 행렬을 x값으로 사용할 것이라면,

(m, 1) 크기의 행렬을 w값으로 사용해 주어야 한다는 것입니다.

그러면 결괏값은 (n, 1) 크기의 행렬로 나오게 되겠지요.

중요한 점이 두개지요!!!

그런데, 중요한 게 또 또 있습니다!

행렬곱은 일반적인 곱셈과는 다르게 곱셈의 순서가 중요하다는 것입니다!

 

위의 식처럼, (5, 3) 크기의 행렬과 (3, 1)를 곱하면 (5, 1)이라는 행렬이 나오지만,

반대로 (3, 1) 크기의 행렬과 (5, 3) 크기의 행렬은 곱할 수 없다는 것입니다.

즉, 순서가 매우 매우 매우 중요합니다!!

 

앞 행렬의 행 크기와, 뒷 행렬의 열 크기가 동일해야 한다는 것입니다!

아까 전과 마찬가지로, (m, n)의 행렬에 곱할 수 있는 행렬은 (n , k) 꼴의 행렬뿐입니다.

(결괏값은 (m, k) 크기의 행렬로 나오겠죠.)

지금까지 설명한거 짤

 

아까 설명한거 짤 (2)
그래서 진짜 중요한게 무엇인가!

즉, 지금까지 하고 싶은 말이 무엇인고 하니...

우리가 Python이나 Tensorflow로 위의 Linear Regression을 구현하려면

지금까지 배웠던 H(x) = Wx + b 로 계산하는 것이 아니고,

H(X) = XW로 구현해야 한다는 것입니다!

 

이것을 특별히 더 강조한 이유는 간단합니다.

이거 처음 배울 때 저는 이 행렬 순서를 맞춰야 된다는 사실을 모른 채라 삽질을 오지게 했기 때문이죠 ㅎ

여러분들은 행렬의 크기를 맞추지 않아서 삽질하는 일은 없도록 합시다!

다음 이 시간엔..?

다음 포스팅에서는 Logistic Regression에 대해서 알아보겠습니다.

 

그럼 안녕!!

Lecture 3 - cost를 최소화하는 법 (Gradient Descent)

안녕하세요.

이번 시간엔 머신 러닝의 꽃이라고 할 수 있는 Gradient Descent에 대해 알아봅시다.

 

가설과 비용

저번 시간에 배웠던 내용을 잠시만 복습하고 들어가 봅시다.

 

우선, Linear Regression의 가설 함수는 H(x) = Wx + b 였고,

Cost function은 각각의 H(x) 값에서 y값(정답)을 빼준 후,

그 값들을 죄다 제곱해서 평균을 내주는 것이었습니다.

기억이 나지 않는다면, 이전 포스팅 (https://cding.tistory.com/12)에서 다시 한번 복습하고 와주세요!

간단하게 만들자! b를 조져버리자!

그런데, 일단은 이해를 쉽게 하도록 하기 위해서 H(x)를 그냥 Wx라고 해봅시다.

(b를 빼준 것뿐, 일차함수라는 큰 틀은 변화하지 않았습니다.)

 

그러면, Cost function도 조금은 바뀌어서...

H(x)에서 y값을 빼주던 것을, Wx에서 y값을 빼주는 것으로 바꾸어도 상관없겠죠?

(H(x) = Wx 이므로)

cost(W)의 값은?

그럼 이 상태에서 cost(W)의 값을 구해보도록 합시다.

X, Y가 왼쪽 표와 같이 주어진다면, 각각 W=1, W=0, W=2 일 때의 Cost값은 무엇일까요?

 

W=1일 경우,

X=1, Y=1에서 (W*x - y)^2 = (1 * 1 - 1)^2 = 0

X=2, Y=2에서 (W*x - y)^2 = (1 * 2 - 2)^2 = 0

X=3, Y=3에서 (W*x - y)^2 = (1 * 3 - 3)^2 = 0

이 세 가지 경우의 수를 모두 더하면 0+0+0 = 0, 평균으로 나눠도 0

즉, Cost(1) = 0입니다.

cost가 0이므로, W=1일 때 완벽하게 데이터에 들어맞는다는 뜻이죠.

 

W=0일 경우에는?

X=1, Y=1에서 (W*x - y)^2 = (2 * 1 - 1)^2 = 1

X=2, Y=2에서 (W*x - y)^2 = (2 * 2 - 2)^2 = 4

X=3, Y=3에서 (W*x - y)^2 = (2 * 3 - 3)^2 = 9

이 세 가지 경우의 수를 모두 더하면 1 + 4 + 9 = 14, 평균으로 나누면 14/3 = 4.66666...

즉, Cost(0) = 4.67입니다.

 

W=2 일 경우에는 어떨지, 직접 한번 해 보시길 바랍니다.

참고로, 답은 W=0일 때와 동일하게 4.67이 됩니다.

밥그릇 모양처럼 생긴 cost(W) 함수...

이렇듯, W값에 따라 cost(W)의 값은 변하게 됩니다.

W=1일 때 cost의 값은 0으로 최소가 되고,

W=2, W=0일 때 cost의 값은 약 4.67이 되는 식이죠.

 

이때, 이런 식으로 cost(W)에서 W의 값에 값들을 많이 집어넣게 되면 위의 그래프처럼 함수가 그려집니다.

(x축을 W로, y축을 Cost(W) 값으로 집어넣은 그래프입니다.)

위에서는 W=-3부터 W=5까지만 집어넣었지만, 다른 값들을 넣어도 여전히 이차함수의 그래프가 그려지게 되겠죠.

 

그런데, 어떻게 cost(W)의 값이 최소가 되는 W의 값을 구할 수 있을까요?

드디어 등장! Gradient Descent!

그래서 등장한 방법이 바로 Gradient Descent 알고리즘입니다.

(Gradient경사, Descent하강이므로 한국어로는 경사 하강법이라고 불립니다.)

위와 같은 상황에서 최소의 W값을 찾아주기 위한 알고리즘인데요,

굉장히 다양한 최소화 문제(특정 값을 최소화해주어야 할 때) 자주 사용되는 기법입니다.

Gradient Descent가 그래서 어떻게 작동하는데 그려?

일단은, Gradient Descent의 작동 방식에 대해 간단하게 먼저 알아봅시다.

우선, W를 랜덤 한 값으로 정해줍니다. (무엇으로 정해도 큰 상관은 없습니다.)

 

그런 후, 그 W의 값을 cost(W)의 값을 최소화시킬 수 있는 방향으로 바꿔줍니다. (보통 W값을 업데이트해준다고 표현합니다.)

그리고, 이 짓거리를 cost(W)가 최소가 될 때까지 반복합니다.

(저 위의 예시의 경우, W=1이 될 때까지 반복될 것입니다.)

 

그럼 여기서 당연히 의문이 하나 드실 것입니다.

"그래서 cost(W)의 값을 최소화시킬 수 있는 방향을 어떻게 아는데??"

 

출처 : 구글 이미지 검색

자, 위의 사진에서 W의 값을 작은 공이라고 생각해 봅시다.

그러면, 공은 어느 방향으로 굴러가나요?

위의 경우, 경사가 왼쪽 아래로 져 있으므로 공은 왼쪽으로 굴러가게 될 것입니다.

그러면, 이 공은 어디까지 굴러갈까요?

cost(W) (위 이미지에선 J(w)라고 적혀있음)의 값이 가장 작아지는,

다시 말해서 가장 높이가 아래에 있는 곳까지 굴러갈 것입니다.

 

Gradient Descent는 이러한 원리와 동일하다고 봐도 됩니다.

W값이 처음 주어졌을 때, 우선 그 W값에 대한 경사를 먼저 구합니다.

그 후, 그 경사가 진 방향으로 W값을 바꿔줍니다.

경사가 왼쪽 방향으로 져 있다면, W값을 빼주고...

경사가 오른쪽 방향으로 져 있다면, W값을 더해주는 식으로 말이죠.

 

그렇게 한다면, 저 함수에서 가장 작은 cost(W)의 값을 가지는 W의 값을 구할 수 있게 됩니다.

Gradient Descent는 이렇게 단순한 생각을 갖고 만들어진 알고리즘입니다.

 

그런데, 그 각각의 W값에 대한 경사는 어떻게 구하냐고요?

그 경사를 구하기 위해서, 우리는 저 함수를 W값에 대하여 미분해 줄 것입니다.

(미분이 뭔지 잘 모르신다면, 간단하게 그냥 함수의 기울기를 구하는 방법 정도로 이해하시면 됩니다.)

일단 계산하기 쉽게 만들어주자!

지금부터의 내용은, 기본적으로 미분을 알고 있어야 이해가 가능합니다!

미분을 모르신다면, 그냥 저 아래로 쭉 내리시면 되겠습니다.

 

우선, f(x)^2를 미분하면 2 * f(x) * f'(x)가 됩니다.

그런데, 그 값에 그냥 m분의 1만 곱해버리면 상수 2가 남아버리니 계산하기 귀찮아지므로...

m분의 1 대신 2m분의 1을 곱하는 것으로 식을 바꾸겠습니다.

수학... 구와아악

f(x)^2를 미분하면, 2 * f(x) * f'(x)가 된다는 사실을 이용하면,

(Wx - y)^2를 미분하면

2 * (Wx - y) * x 가 됩니다.

 

그리고 시그마 앞에선 2가 앞으로 넘어갈 수 있으므로,

2를 앞으로 넘기면 시그마 앞의 값은 1/2m * 2 = 1/m이 됩니다.

 

결국, W값은 W값에서 (Wx - y) * x의 평균을 낸 값을 뺀 값으로 업데이트해 줍니다. (위의 식 참고)

참고로, 위의 알파 값은 Learning Rate라는 것으로, 이에 대한 자세한 내용은 다른  시간에 알아봅시다.

 

Q. 왜 W값에서 "(Wx - y) * x의 평균을 낸 값"을 더하지 않고 빼는 것인가요?

A. 경사가 왼쪽을 향하고 있을 때, 그때의 미분 값은 양수인 가요, 음수인가요?

예, 경사가 왼쪽으로 져 있다면, 그 미분 값 (경사의 기울기 값)은 양수가 됩니다.

그런데 경사가 왼쪽으로 져 있으면, W값을 왼쪽으로 옮겨야겠죠? (즉, W값을 감소시켜야겠죠?)

그러므로, W값에서 양수를 빼주어야 W값이 감소하기 때문에, 저 값을 더하지 않고 빼는 것입니다.

 

반대로 경사가 오른쪽으로 져 있을 때에는 미분 값(기울기 값)이 음수가 되는데,

W값을 증가시켜 주어야 하므로,

음수를 빼주어서 W값을 증가시키는 것입니다.

응~~ 미분 컴퓨터한테 시켜 그냥~~

그런데, 저 미분을 죄다 하고 있을 시간은 사람에게 없습니다.

그런 일 따위는 컴퓨터에게 시킬 수 있습니다.

즉, 미분 사실 몰라도 공식만 대충 집어넣으면 된다는 거죠,

(게다가 텐서 플로우를 비롯한 대부분의 머신러닝 툴에서는 Gradient Descent는 모두 지원합니다.)

윽;; 무슨 함수가 이래?

그런데 만약 함수가 이따구로 생겼다면 어떻게 될까요?

어느 점에서 시작하느냐에 따라 경사가 진 곳이 죄다 다르므로, 향하는 방향이 죄다 다르게 됩니다.

결국, W값이 우리가 원하는 "함수 전체에서의 최솟값"으로 가는 것이 아니라,

"일정 구간만에서의 최솟값"으로 가게 됩니다.

이를 각각, "Global Minima"와 "Local Minima"라고 부릅니다.

 

아무튼, 저렇게 생긴 함수에선 그냥 W값이 Local Minima에 처박힐 가능성이 매우 높기에, Gradient Descent의 성능이 매우 떨어집니다.

편-안한 트램펄린 모양의 함수, Convex function

그러므로, 우리는 Cost function 저렇게 이상하게 생긴 함수로 두면 안되고,

아름다운 밥그릇 모양 (중간이 패인 트램펄린 모양?)으로 생긴 함수를 사용하여야 합니다.

그러면, 결국 Local minima가 한 개뿐이므로 Local MinimaGlobal Minima와 같은 것이 됩니다.

이런 식으로, Local minimaGlobal minima가 동일한 아름다운 함수를 우리는 Convex function이라고 부릅니다.

 

그러므로, 우리는 Convex functionCost function으로 사용하여야 합니다.

다음 이 시간에는...

 

다음 시간에는, Multi-variable Linear Regression(다변수 선형 회귀)에 대해 배워보겠습니다.

(왜 로지스틱이라고 적혀있는지는 잘 모르겠습니다;; 분명 다음엔 Linear regression인데;)

그럼 안녕!

+ Recent posts